

MACHINE-LEARNING DRIVEN CORRELATION STUDIES: MULTI-BAND FREQUENCY CHIRPING AT NSTX

B. J. Q. WOODS, V. N. DUARTE, E. D. FREDRICKSON, N. N. GORELENKOV, M. PODESTÀ

PPPL SEMINAR, 29.06.18

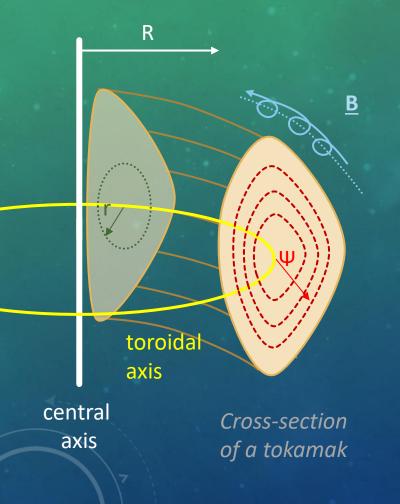
SEMINAR CONTENT

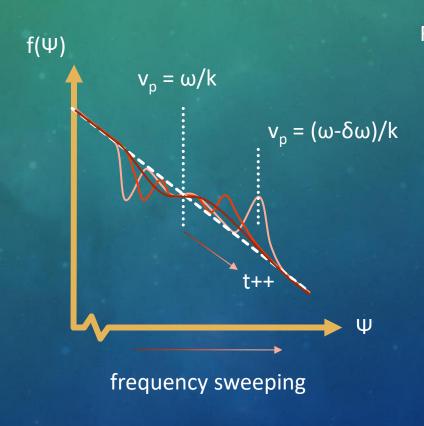
- Brief introduction to mode avalanching
- Machine learning for chirping characterisation
- Mode character correlations on NSTX

UNIVERSITY of York

BRIEF INTRODUCTION TO MODE AVALANCHING

FAST ION LOSS VIA RESONANT INSTABILITIES





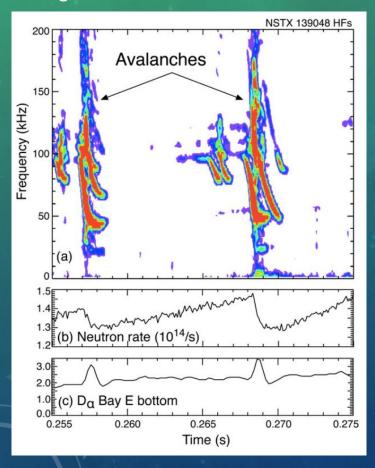
Resonant instability

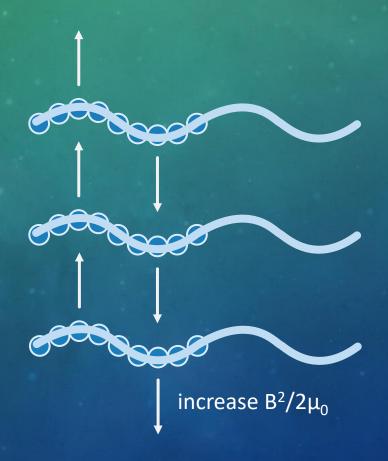
- Fast ion distribution is peaked near the toroidal axis
- Some particles resonate with the EM field (c.f. inverse Landau damping)
- Frequency sweeping
- Fast ion transport mechanism

$$p_{\varphi} = mRv_{\varphi} - q\Psi$$

ALFVÉNIC AVALANCHING

Magnetic fluctuations from NSTX [1]





Alfvén waves

- MHD wave
- Subject to kinetic instability
- Compressional branch is analogous to acoustic wave

Fast ion loss correlated with drop in neutron rate during "avalanches"

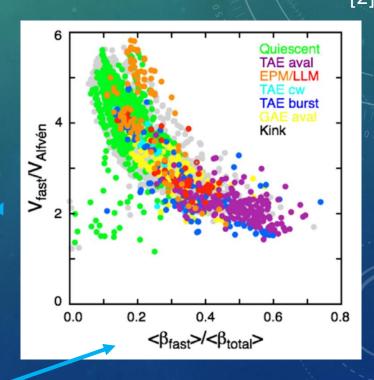
Research questions:

?: What causes mode avalanching?
?: How can we stop it?

MACHINE LEARNING FOR MODE CHARACTERISATION

MACHINE LEARNING FOR FUSION APPLICATIONS

- Vast increase in speed for certain tasks
 - Data analysis can be done faster
 - Computational predictions can be extracted faster
 - May prove **vital** for operational performance of a tokamak
- Can we train an AI to recognise and characterise chirping?
 - Potentially feed into overall control system
- Knowledge of correlations between plasma parameters and mode character is key
 - i.e. turbulent suppression of mode chirping [3,4]



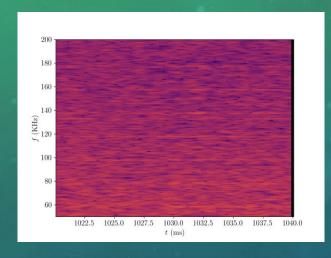
very time consuming to produce

only 2 parameters

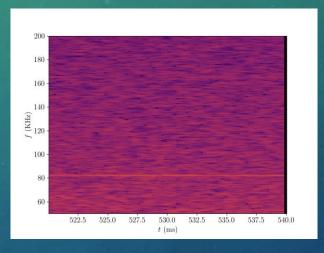
[4] B. J. Q. Woods et al. 2018 NF 58, 082015

21

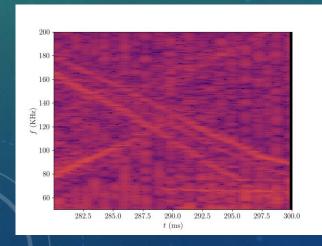
MODE CHARACTER CATEGORIES



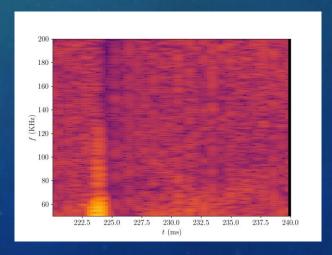
Noise/quiescence



Fixed frequency



Chirping



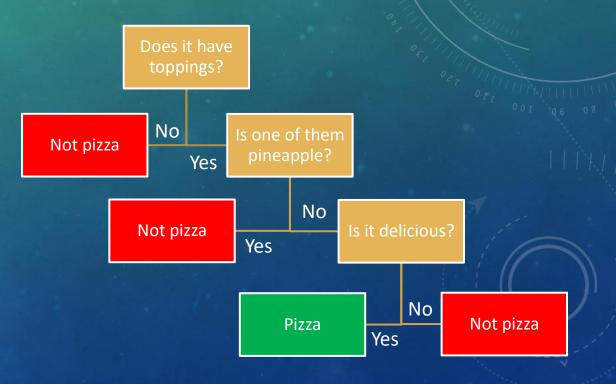
Avalanching

(Shots 127109, 134851)

DECISION TREE CLASSIFICATION

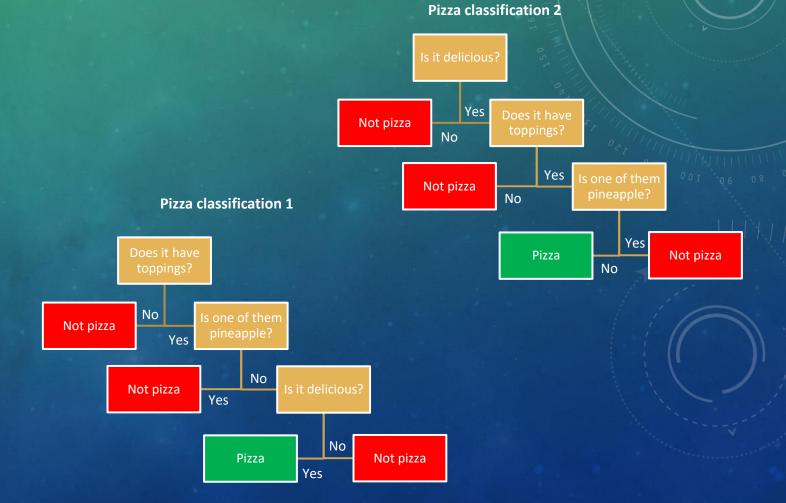
- Human classification can be broadly considered as a flowchart, or decision tree
- The maximum depth of the tree is the maximum number of decisions

Pizza classification



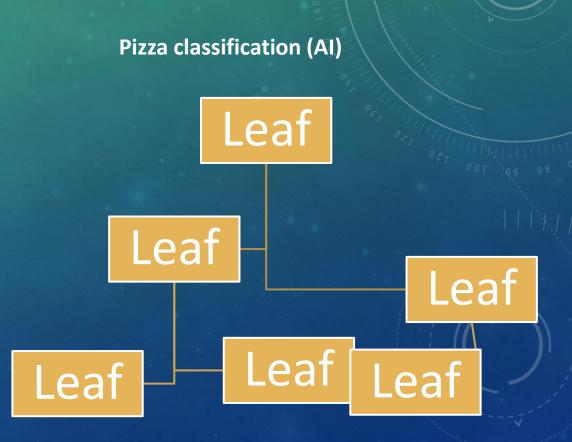
DECISION TREE CLASSIFICATION

- In principle, there is a free choice of decision tree
 - We can ask different questions
 - We can permutate questions
- Each tree should lead to the same overall outcomes



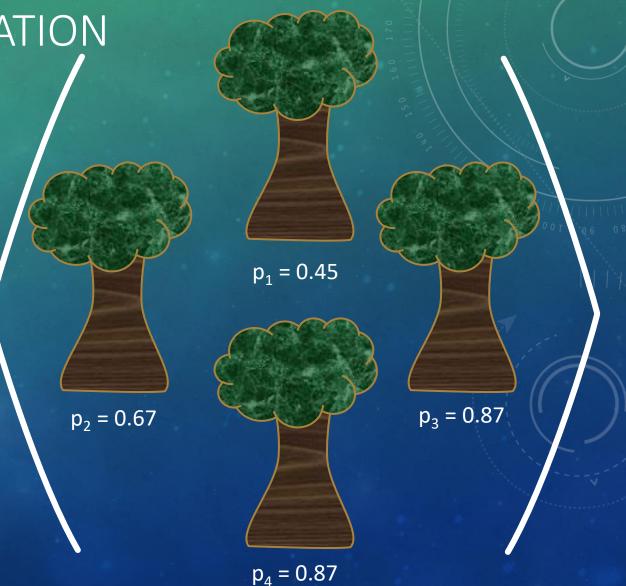
DECISION TREE CLASSIFICATION

- A simple AI decision tree creates a "decision" (leaf), and places weights against the data
- After optimizing the weights by testing against the training set, it splits and creates more leaves based on probability of success
- Each branch (path between leaves) has a maximum depth
 - After training, the path taken through the tree depends on the found weights
- Highly random structure
 - Probability of successful classification varies from tree to tree
- Make the tree too deep **overfit**
- Make the tree too shallow underfit



RANDOM FOREST CLASSIFICATION

- Take an ensemble of trees, and take an average classification
- Linear average (mean) yields the mean accuracy
- Non-linear averages (mode, RMS) can yield higher accuracy than the mean
 - If the standard deviation in accuracies is low



tweak parameters

OVERALL TRAINING FRAMEWORK

Training shot list

Produce STFT frequency pand (i.e. 1-30 kHz) Produce STFT processed data (Python)

Plot data and perform human characterization (Python)

Tweak AI parameters (Python)

THIS IS YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?

JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT. [5]

The AI operates as a multi-class classifier:

- 4 separate classifiers (quiescent, fixed-freq, chirping, avalanching)
- Each classifier is a random forest in **scikit-learn**
 - Maximise probability by changing **no. of trees** and **branch depth** (pruning)
- Characterisation sits in a hierarchy (aval. > chirp. > fixed-freq. > quie.)

Take highest prob.

$$p \leq \max(p_i)$$

Take hierarchal prob.

$$p \le \prod_{i=1}^{4} p_i$$

OVERALL CORRELATION FRAMEWORK

Select TRANSP data (BASH)

Grab TRANSP data weighted averages (Python)

Correlation studies (Python)

Shot list

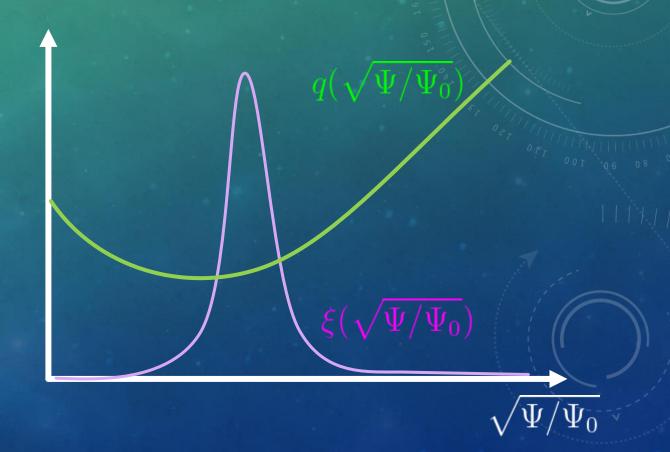
Grab NSTX data (BASH, IDL)

Pick frequency band (i.e. 1-30 kHz) Produce STFT processed data (Python) characterization (Python)

WEIGHTED AVERAGES

- Chirping is a non-linear phenomenon
- Requires wave-wave or wave-particle nonlinearity
- Aim: correlate chirping with plasma parameters
 - These parameters can be spatially dependent
- **Solution:** take weighted averages
 - Weighting is a normalised 'window function' which mimics mode structure

$$\langle g \rangle \equiv \int_{0}^{1} (g \cdot w) \, \mathrm{d}\sqrt{\Psi/\Psi_{0}}$$



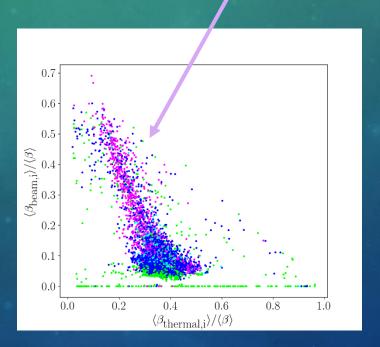
BEAM ION BETA

Measure of fast ion resonant drive

- Low freq. modes:
 - Avalanche at high %
- TAEs:
 - Significantly less avalanching

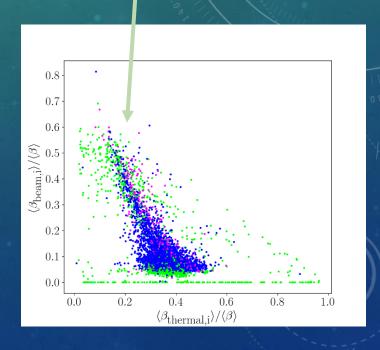
Generally at high beam ion beta, fishbones are very active while TAEs are less active

more avalanching



kink/tearing/fishbones (1-30 kHz)

more quiescence



TAEs (50-200 kHz)

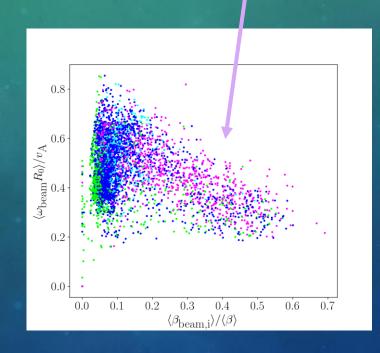
quiescent – fixed freq. – chirping – avalanching

BEAM TOROIDAL VELOCITY

Measure of fast ion average velocity

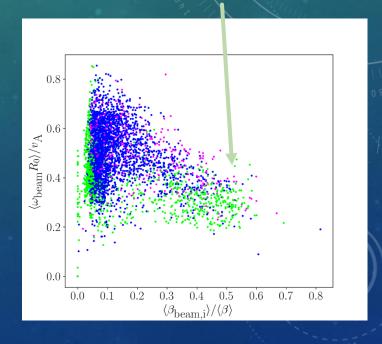
invariant w.r.t BTV

- Low freq. modes:
 - BTV not key factor for chirping
- TAEs
 - More quiescent at similar values of BTV for high beam ion beta



kink/tearing/fishbones (1-30 kHz)

slight preference w.r.t BTV



TAEs (50-200 kHz)

quiescent – fixed freq. – chirping – avalanching

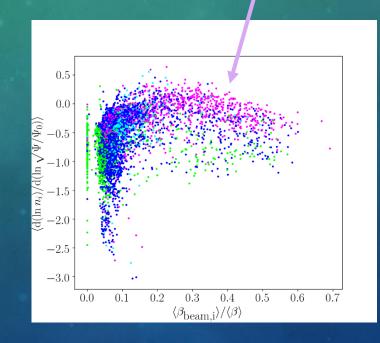
NORMALISED ION DENSITY GRADIENT

Measure of MHD stability

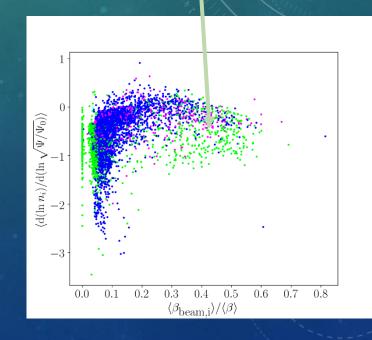
more avalanching

more quiescence

- Low freq. modes:
 - More avalanching/chirping at high beam beta
- TAEs:
 - More quiescence at high beam beta



kink/tearing/fishbones (1-30 kHz)



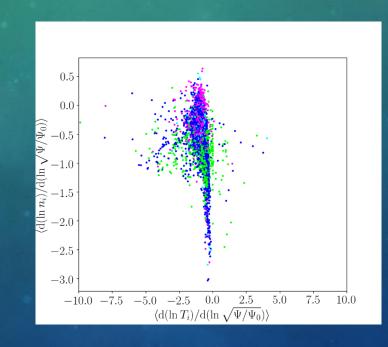
TAEs (50-200 kHz)

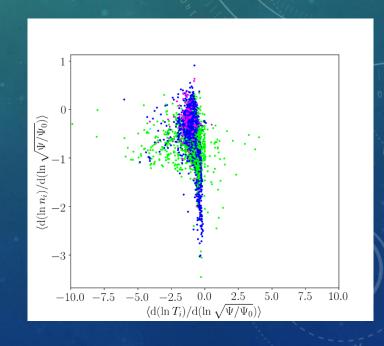
quiescent – fixed freq. – chirping – avalanching

TEMPERATURE AND PRESSURE GRADIENTS

Measure of MHD stability

- Both feature a window of increased quiescence
 - Modes here intermittently chirp
- At high |n_i'|, decreased quiescence
 - Modes here continuously chirp
- At n_i' > -0.5, increased avalanching?
 - Profile inversion/flattening due to large scale chirping/avalanching? (see [6])





TAEs (50-200 kHz)

SUMMARY

- Particle resonance can lead to fast ion loss
- Machine learning offers a promising future for rapid characterisation of active modes in a tokamak
- Preliminary results show interesting correlations
 - Mode character depends strongly on beam beta
 - |n_i'| may indicate hysteresis

Thanks for listening!

- [1] E.D. Fredrickson et al. 2013 NF **53** 013006
- [2] E. D. Fredrickson et al. 2014 NF **54**, 093007
- [3] V. N. Duarte et al. 2017 NF **57**, 054001
- [4] B. J. Q. Woods et al. 2018 NF 58, 082015
- [5] http://xkcd.com/1838
- [6] Y. Todo et al. 2014 NF **54**, 104012